Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Complement Med Ther ; 24(1): 16, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166788

RESUMEN

BACKGROUND AND AIMS: Curcuma aeruginosa, commonly known as "kha-min-dam" in Thai, holds significance in Asian traditional medicine due to its potential in treating various diseases, having properties such as anti-HIV, hepatoprotective, antimicrobial and anti-androgenic activities. This study explores the anticancer activity of C. aeruginosa essential oil (CAEO) and its nano-formulations. METHODS: CAEO obtained from hydrodistillation of C. aeruginosa fresh rhizomes was examined by gas chromatography mass spectroscopy. Cytotoxicity of CAEO was determined in leukaemic K562 and breast cancer MCF-7 cell lines using an MTT assay. Cell cycle analysis and cell apoptosis were determined by flow cytometry. Cell migration was studied through a wound-healing assay. RESULTS: Benzofuran (33.20%) emerged as the major compound of CAEO, followed by Germacrene B (19.12%) and Germacrone (13.60%). Two types of CAEO loaded nano-formulations, nanoemulsion (NE) and microemulsion (ME) were developed. The average droplet sizes of NE and ME were 13.8 ± 0.2 and 21.2 ± 0.2 nm, respectively. In a comparison with other essential oils from the fresh rhizomes of potential plants from the same family (Curcuma longa, Curcuma mangga and Zingiber officinale) on anticancer activity against K562 and MCF-7 cell lines, CAEO exhibited the highest cytotoxicity with IC50 of 13.43 ± 1.09 and 20.18 ± 1.20 µg/mL, respectively. Flow cytometry analysis revealed that CAEO significantly increased cell death, evidenced from the sub-G1 populations in the cell cycle assay and triggered apoptosis. Additionally, CAEO effectively inhibited cell migration in MCF-7 cells after incubation for 12 and 24 h. The developed NE and ME formulations significantly enhanced the cytotoxicity of CAEO against K562 cells with an IC50 of 45.30 ± 1.49 and 41.98 ± 0.96 µg/mL, respectively. CONCLUSION: This study's finding suggest that both nano-formulations, NE and ME, effectively facilitated the delivery of CAEO into cancer cells.


Asunto(s)
Aceites Volátiles , Humanos , Aceites Volátiles/farmacología , Aceites Volátiles/química , Curcuma/química , Apoptosis , Células MCF-7 , Movimiento Celular
2.
Plants (Basel) ; 13(2)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38256842

RESUMEN

Non-small-cell lung cancer (NSCLC) is renowned for its aggressive and highly metastatic nature. In recent years, there has been a surge in interest regarding the therapeutic potential of traditional medicinal plants. Dracaena loureirin (D. loureirin), Ficus racemosa Linn. (F. racemosa), and Harrisonia perforata (Blanco) Merr. (H. perforata) are prominent traditional medicinal herbs in Thailand, recognized for their diverse biological activities, including antipyretic and anti-inflammatory effects. However, their prospective anti-cancer properties against NSCLC remain largely unexplored. This study aimed to evaluate the anti-cancer attributes of ethanolic extracts obtained from D. loureiri (DLEE), F. racemosa (FREE), and H. perforata (HPEE) against the A549 lung adenocarcinoma cell lines. Sulforhodamine B (SRB) assay results revealed that only DLEE exhibited cytotoxic effects on A549 cells, whereas FREE and HPEE showed no such cytotoxicity. To elucidate the anti-cancer mechanisms of DLEE, cell cycle and apoptosis assays were performed. The findings demonstrated that DLEE inhibited cell proliferation and induced cell cycle arrest at the G0/G1 phase in A549 cells through the downregulation of key cell cycle regulator proteins, including cyclin D1, CDK-2, and CDK-4. Furthermore, DLEE treatment facilitated apoptosis in A549 cells by suppressing anti-apoptotic proteins (Bcl-2, Bcl-xl, and survivin) and enhancing apoptotic proteins (cleaved-caspase-3 and cleaved-PARP-1). In summary, our study provides novel insights into the significant anti-cancer properties of DLEE against A549 cells. This work represents the first report suggesting that DLEE has the capability to impede the growth of A549 lung adenocarcinoma cells through the induction of apoptosis.

3.
Front Pharmacol ; 14: 1243727, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38026959

RESUMEN

Objective: Non-small cell lung cancer (NSCLC) is recognized for its aggressive nature and propensity for high rates of metastasis. The NLRP3 inflammasome pathway plays a vital role in the progression of NSCLC. This study aimed to investigate the effects of S. exigua extract and its active compounds on NLRP3 regulation in NSCLC using an in vitro model. Methods: S. exigua was extracted using hexane, ethyl acetate and ethanol to obtain S. exigua hexane fraction (SE-Hex), S. exigua ethyl acetate fraction (SE-EA), and S. exigua ethanol fraction (SE-EtOH) respectively. The active compounds were identified using column chromatography and NMR analysis. A549 cells were primed with lipopolysaccharide (LPS) and adenosine triphosphate (ATP) for activated NLRP3 inflammasome. The anti-inflammatory properties were determined using ELISA assay. The anti-proliferation and anti-metastasis properties against LPS-ATP-induced A549 cells were determined by colony formation, cell cycle, wound healing, and trans-well migration and invasion assays. The inflammatory gene expressions and molecular mechanism were determined using RT-qPCR and Western blot analysis, respectively. Results: SE-EA exhibited the greatest anti-inflammation properties compared with other two fractions as evidenced by the significant inhibition of IL-1ß, IL-18, and IL-6, cytokine productions from LPS-ATP-induced A549 cells in a dose-dependent manner (p < 0.05). The analysis of active compounds revealed exiguaflavanone A (EGF-A) and exiguaflavanone B (EGF-B) as the major compounds present in SE-EA. Then, SE-EA and its major compound were investigated for the anti-proliferation and anti-metastasis properties. It was found that SE-EA, EGF-A, and EGF-B could inhibit the proliferation of LPS-ATP-induced A549 cells through cell cycle arrest induction at the G0/G1 phase and reducing the expression of cell cycle regulator proteins. Furthermore, SE-EA and its major compounds dose-dependently suppressed migration and invasion of LPS-ATP-induced A549 cells. At the molecular level, SE-EA, EGF-A, and EGF-B significantly downregulated the mRNA expression of IL-1ß, IL-18, IL-6, and NLRP3 in LPS-ATP-induced A549 cells. Regarding the mechanistic study, SE-EA, EGF-A, and EGF-B inhibited NLRP3 inflammasome activation through suppressing NLRP3, ASC, pro-caspase-1(p50 form), and cleaved-caspase-1(p20 form) expressions. Conclusion: Targeting NLRP3 inflammasome pathway holds promise as a therapeutic approach to counteract pro-tumorigenic inflammation and develop novel treatments for NSCLC.

4.
Int J Mol Sci ; 24(20)2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37894738

RESUMEN

Interleukine-17 is a proinflammatory cytokine that promotes lung cancer growth and progression though the activation of the STAT3, NF-κB, and AP-1 signaling pathways. Therefore, blocking the IL-17-induced oncogenic pathway is a new strategy for the treatment of lung cancer. Notopterol, a furanocoumarin, has demonstrated anti-tumor effects in several types of tumors. However, its molecular function in relation to the IL-17-induced proliferation and invasion of A549 lung adenocarcinoma cells remains unknown. Here, notopterol exhibited an inhibitory effect on IL-17-promoted A549 cell proliferation and induced G0/G1 cell cycle arrest. Western blot analysis revealed that notopterol inhibited the expression of cell-cycle-regulatory proteins, including cyclin D1, cyclin E, CDK4, and E2F. Moreover, notopterol blocked IL-17-induced A549 cell migration and invasion by regulating the epithelial-mesenchymal transition (EMT) and reducing the expression of extracellular degradation enzymes. At the molecular level, notopterol treatment significantly down-regulated the IL-17-activated phosphorylation of Akt, JNK, ERK1/2, and STAT3, leading to a reduced level of transcriptional activity of NF-κB and AP-1. Collectively, our results suggest that notopterol blocks IL-17-induced A549 cell proliferation and invasion through the suppression of the MAPK, Akt, STAT3, AP-1, and NF-κB signaling pathways, as well as modulating EMT.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , FN-kappa B/metabolismo , Factor de Transcripción AP-1/metabolismo , Interleucina-17/farmacología , Interleucina-17/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Línea Celular Tumoral , Adenocarcinoma del Pulmón/patología , Células A549 , Neoplasias Pulmonares/metabolismo , Proliferación Celular , Movimiento Celular , Factor de Transcripción STAT3/metabolismo
5.
Front Pharmacol ; 14: 1243961, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37799972

RESUMEN

Objective: Larvae of Hermitia illucens, or black soldier fly larvae (BSFL), have been recognized for their high lipid yield with a remarkable fatty acid profile. BSFL oil (SFO) offers the added value of a low environmental footprint and a sustainable product. In this study, the characteristics and cosmetic-related activities of SFO were investigated and compared with rice bran oil, olive oil and krill oil which are commonly used in cosmetics and supplements. Methods: The physicochemical characteristics were determined including acid value, saponification value, unsaponifiable matter and water content of SFO. The fatty acid composition was determined using GC-MS equipped with TR-FAME. The in vitro antioxidant properties were determined using DPPH, FRAP and lipid peroxidation inhibition assays. Antihyaluronidase (anti-HAase) activity was measured by detecting enzyme activity and molecular docking of candidate compounds toward the HAase enzyme. The safety assessment towards normal human cells was determined using the MTT assay and the UVB protection upon UVB-irradiated fibroblasts was determined using the DCF-DA assay. The whitening effect of SFO was determined using melanin content inhibition. Results: SFO contains more than 60% polyunsaturated fatty acids followed by saturated fatty acids (up to 37%). The most abundant component found in SFO was linoleic acid (C18:2 n-6 cis). Multiple anti-oxidant mechanisms of SFO were discovered. In addition, SFO and krill oil prevented hyaluronic acid (HA) degradation via strong HAase inhibition comparable with the positive control, oleanolic acid. The molecular docking confirmed the binding interactions and molecular recognition of major free fatty acids toward HAase. Furthermore, SFO exhibited no cytotoxicity on primary human skin fibroblasts, HaCaT keratinocytes and PBMCs (IC50 values > 200 µg/mL). SFO possessed significant in-situ anti-oxidant activity in UVB-irradiated fibroblasts and the melanin inhibition activity as effective as well-known anti-pigmenting compounds (kojic acid and arbutin, p < 0.05). Conclusion: This study provides scientific support for various aspects of SFO. SFO can be considered an alternative oil ingredient in cosmetic products with potential implications for anti-skin aging, whitening and UVB protection properties, making it a potential candidate oil in the cosmetic industry.

6.
Nutrients ; 15(17)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37686825

RESUMEN

The activation of the NLRP3 inflammasome pathway during infectious pathogen-induced immunopathology can lead to chronic inflammation and various adverse health outcomes. Identification of functional foods with anti-inflammatory properties is crucial for preventing inflammation triggered by NLRP3 inflammasome activation. This study aimed to investigate the anti-inflammatory properties of a proanthocyanidin-rich fraction obtained from red rice germ and bran against lipopolysaccharide (LPS) and adenosine triphosphate (ATP)-induced condition in A549 lung cells. The proanthocyanidin-rich fraction from Yamuechaebia 3 red rice extract (YM3-PRF) was obtained using column chromatography with Sephadex LH20, and its total proanthocyanidin content was determined to be 351.43 ± 1.18 mg/g extract using the vanillin assay. A549 lung cells were pretreated with YM3-PRF at concentrations of 5-20 µg/mL prior to exposure to LPS (1 µg/mL) and ATP (5 nM). The results showed that YM3-PRF significantly inhibited the expression of inflammatory mRNAs (NLRP3, IL-6, IL-1ß, and IL-18) and the secretion of cytokines (IL-6, IL-1ß, and IL-18) in a dose-dependent manner (p < 0.05). Mechanistically, YM3-PRF exerted its anti-inflammatory effects by inhibiting NF-κB translocation and downregulating proteins associated with the NLRP3 inflammasome pathway (NLRP3, ASC, pro-caspase-1, and cleaved-caspase-1). These findings suggest that the proanthocyanidin-rich fraction from red rice germ and bran has protective effects and may serve as a potential therapeutic option for chronic inflammatory diseases associated with NLRP3 inflammasome activation.


Asunto(s)
Oryza , Neumonía , Proantocianidinas , FN-kappa B , Inflamasomas , Interleucina-18 , Proteína con Dominio Pirina 3 de la Familia NLR , Interleucina-6 , Lipopolisacáridos , Proantocianidinas/farmacología , Inflamación , Alimentos Funcionales , Adenosina Trifosfato , Pulmón , Extractos Vegetales/farmacología
7.
BMC Complement Med Ther ; 23(1): 191, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37296375

RESUMEN

BACKGROUND AND AIMS: The purpose of this study was to investigate the biological properties of Kae-Lae (Maclura cochinchinensis (Lour.) Corner), a traditional medicinal plant used in Ayurvedic recipes in Thailand. To achieve this objective, heartwood samples were collected from 12 sources across Thailand. Fractional extracts (n-hexane, ethyl acetate, and ethanol) and the dominant compounds (morin, resveratrol, and quercetin) were examined for their abilities on cytotoxicity, antioxidant, anti-inflammation, and antileukaemic activity (Wilms' tumour 1 protein was used as a well-known biomarker for leukaemic cell proliferation). METHODS: The study used MTT to assess cytotoxicity in leukaemic cells (K562, EoL-1, and KG-1a). Antioxidant activities were evaluated using ABTS, DPPH, and FRAP assays. The anti-inflammatory activity was investigated by detecting IL-2, TNF-α, and NO using appropriate detection kits. Wilms' tumour 1 protein expression was measured by Western blotting to determine the anti-leukaemic activity. The inhibition of cell migration was also analyzed to confirm anticancer progression. RESULTS: Among the tested extract fraction, ethyl acetate No. 001 displayed strong cytotoxicity specifically in EoL-1 cells, while n-hexane No. 008 demonstrated this effect in three cell lines. Resveratrol, on the other hand, displayed cytotoxicity in all the tested cells. Additionally, the three major compounds, morin, resveratrol, and quercetin, exhibited significant antioxidant and anti-inflammatory properties. In particular, resveratrol demonstrated a noteworthy decreased Wilms' tumour 1 protein expression and a reduction in cell proliferation across all cells. Moreover, ethyl acetate No. 001, morin, and resveratrol effectively inhibited MCF-7 cell migration. None of these compounds showed any impact on red blood cell haemolysis. CONCLUSION: Based on these findings, it can be concluded that Kae-Lae has promising chemotherapeutic potential against leukaemic cells, with fractional extracts (ethyl acetate and n-hexane) and resveratrol exhibiting the most potent cytotoxic, antioxidant, anti-inflammatory, and anti-cell migration activities.


Asunto(s)
Antioxidantes , Maclura , Humanos , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Antioxidantes/química , Flavonoides/farmacología , Maclura/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Quercetina , Resveratrol , Tailandia , Proteínas WT1/metabolismo
8.
Pharmaceuticals (Basel) ; 16(6)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37375809

RESUMEN

Chronic inflammation and tissue damage can result from uncontrolled inflammation during SARS-CoV-2 or COVID-19 infections, leading to post-acute COVID conditions or long COVID. Curcumin, found in turmeric, has potent anti-inflammatory properties but limited effectiveness. This study developed nanocurcumin, a curcumin nanoparticle, to enhance its physical and chemical stability and investigate its in vitro anti-inflammatory properties upon CoV2-SP induction in lung epithelial cells. Nanocurcumin was prepared by encapsulating curcumin extract in phospholipids. The particle size, polydispersity index, and zeta potential of nanocurcumin were measured using dynamic light scattering. The encapsulated curcumin content was determined using HPLC analysis. The encapsulation efficiency of curcumin was 90.74 ± 5.35% as determined by HPLC. Regarding the in vitro release of curcumin, nanocurcumin displayed a higher release content than non-nanoparticle curcumin. Nanocurcumin was further investigated for its anti-inflammatory properties using A549 lung epithelial cell line. As determined by ELISA, nanocurcumin showed inhibitory effects on inflammatory cytokine releases in CoV2-SP-stimulated conditions, as evidenced by a significant decrease in IL-6, IL-1ß and IL-18 cytokine secretions compared with the spike-stimulated control group (p < 0.05). Additionally, as determined by RT-PCR, nanocurcumin significantly inhibited the CoV2-SP-stimulated expression of inflammatory genes (IL-6, IL-1ß, IL-18, and NLRP3) compared with the spike-stimulated control group (p < 0.05). Regarding the inhibition of NLRP3 inflammasome machinery proteins by Western blot, nanocurcumin decreased the expressions of inflammasome machinery proteins including NLRP3, ASC, pro-caspase-1, and the active form of caspase-1 in CoV2-SP-stimulated A549 cells compared with the spike-stimulated control group (p < 0.05). Overall, the nanoparticle formulation of curcumin improved its solubility and bioavailability, demonstrating anti-inflammatory effects in a CoV2-SP-induced scenario by inhibiting inflammatory mediators and the NLRP3 inflammasome machinery. Nanocurcumin shows promise as an anti-inflammatory product for preventing COVID-19-related airway inflammation.

9.
Int J Mol Sci ; 24(7)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37047425

RESUMEN

Castration-resistant prostate cancer (CRPC) is an advanced form of prostate cancer associated with poor survival rates. The high proliferation and metastasis rates have made CRPC one of the most challenging types of cancer for medical practitioners and researchers. In this study, the anti-cancer properties and inhibition of CRPC progression by S. neglecta extract and its active constituents were determined using two CRPC cell lines, DU145 and PC3. The ethyl acetate fraction of S. neglecta (SnEA) was obtained using a solvent-partitioned extraction technique. The active constituents of SnEA were then determined using the HPLC technique, which showed that SnEA mainly contained syringic acid, pyrogallol, and p-coumaric acid phenolic compounds. After the determination of cytotoxic properties using the SRB assay, it was found that pyrogallol, but not the other two major compounds of SnEA, displayed promising anti-cancer properties in both CRPC cell lines. SnEA and pyrogallol were then further investigated for their anti-proliferation and apoptotic induction properties using propidium iodide and Annexin V staining. The results showed that SnEA and pyrogallol inhibited both DU145 and PC3 cell proliferation by inducing cell cycle arrest in the G0/G1 phase and significantly decreased the expression of cell cycle regulator proteins (cyclin D1, cyclin E1, CDK-2, and CDK-4, p < 0.001). SnEA and pyrogallol treatments also promoted apoptosis in both types of CRPC cells through significantly downregulating anti-apoptotic proteins (survivin, Bcl-2, and Bcl-xl, p < 0.001) and upregulating apoptotic proteins (cleaved-caspase-9, cleaved-caspase-3 and cleaved-PARP-1, p < 0.001). Mechanistic study demonstrated that SnEA and pyrogallol inactivated the Akt signaling pathway leading to enhancement of the active form of GSK-3ß in CRPC cell lines. Therefore, the phosphorylation of ß-catenin was increased, which caused degradation of the protein, resulting in a downregulation of ß-catenin (unphosphorylated form) transcriptional factor activity. The current results reflect the potential impact of S. neglecta extract and pyrogallol on the management of castration-resistant prostate cancer.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Spirogyra , Masculino , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Pirogalol/farmacología , Spirogyra/metabolismo , Neglecta , beta Catenina/metabolismo , Línea Celular Tumoral , Proliferación Celular , Transducción de Señal , Apoptosis
10.
Oncol Rep ; 49(1)2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36416312

RESUMEN

7­Methoxyheptaphylline (7­MH) is a carbazole extracted from Clausena harmandiana, a medicinal plant that is used to treat headaches and stomachaches. The aim of the present study was to examine the neuroprotective effects and anticancer activity of 7­MH. Cell death was assessed using an MTT assay and flow cytometry. The expression of apoptosis­related proteins was determined by western blot analysis. An animal model was used to test anti­metastasis. The interactions between 7­MH and the molecular target were observed using molecular docking. The results revealed that 7­MH provided protection against hydrogen peroxide (H2O2)­induced neuronal cell death. In cancer cells, 7­MH induced SH­SY5Y, 4T1, HT29, HepG2, and LNCaP cell death. 7­MH inhibited metastasis of HT29 cells in vitro and 4T1­Luc cells in vitro and in vivo. 7­MH inhibited proteins, including P­glycogen synthase kinase (GSK)­3, and cleaved caspase­3, but it activated anti­apoptotic proteins in H2O2­induced SH­SY5Y cell death. By contrast, 7­MH activated the cleaving of caspase­3 and GSK­3, but it suppressed anti­apoptotic proteins in SH­SY5Y cells. 7­MH reduced the levels of NF­κB and STAT3 in 4T1 cells; phospho­p65, Erk, and MAPK13 in LNCaP cells; and phospho­Erk and matrix metalloproteinase­9 in HT29 cells. Molecular docking analysis showed that 7­MH targets TAK1 kinase. The present study indicated that 7­MH induced apoptosis of cancer cells and provided protection against H2O2­induced neuron cell death via TAK1 kinase.


Asunto(s)
Peróxido de Hidrógeno , Neuroblastoma , Animales , Humanos , Caspasa 3/metabolismo , Peróxido de Hidrógeno/farmacología , Glucógeno Sintasa Quinasa 3 , Simulación del Acoplamiento Molecular , Línea Celular Tumoral , Neuroblastoma/metabolismo , Carbazoles/farmacología
11.
Eur Food Res Technol ; 249(2): 451-464, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36246093

RESUMEN

Black rice has numerous health benefits and one of the well-known functional foods throughout the world. To encourage the increasing trend of the consumer interest in health-promoting functional foods, special varieties of rice have been developed offering greater nutrient values and exhibiting biological activities that are beneficial to the consumer. In this study, we aimed to evaluate the associations of the phytochemical contents, antioxidants, and anti-inflammatory properties among eight selected black rice germ and bran extracts (BR extracts) from 4 non-glutinous and 4 glutinous rice varieties. Accordingly, glutinous BR extracts possessed higher degree of Cyanidin-3-O-glucoside (C3G), Peonidin-3-O-glucoside (P3G) contents, antioxidant and anti-inflammatory properties than the non-glutinous BR extracts. Pearson's correlation indicated that the amount of C3G in the BR extracts had a strong positive association with the antioxidant properties (DPPH; r = 0.846, ABTS; r = 0.923, and FRAP; r = 0.958, p < 0.01). While P3G exhibited a strong positive association with the anti-inflammatory properties (r value = 0.717 and 0.797 for IL-6 and TNF-α inhibition, respectively, p < 0.05). Lastly, the principal component analysis (PCA) categorized the black rice varieties into three groups: Group A with high C3G content and superior antioxidant properties, Groups B with a high amount of P3G and potent anti-inflammatory properties, and Group C with a lower amount of phytochemical contents and less potent bioactivities. Overall, the outcomes of this study could provide vital information to food industries in selecting the variety of black rice for the functional food based on the anthocyanin contents that could benefit to consumers for new normal healthy lifestyle.

12.
Pharmaceutics ; 14(10)2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36297550

RESUMEN

Doxorubicin (Dox) is the standard chemotherapeutic agent for acute myeloblastic leukemia (AML) treatment. However, 40% of Dox-treated AML cases relapsed due to the presence of leukemic stem cells (LSCs). Thus, poloxamer 407 and CKR- and EVQ-FLT3 peptides were used to formulate Dox-micelles (DMs) and DM conjugated with peptides (CKR and EVQ) for improving AML-LSC treatment. Results indicated that DMs with a weight ratio of Dox to P407 of 1:200 had a particle size of 23.3 ± 1.3 nm with a high percentage of Dox entrapment. They were able to prolong drug release and maintain physicochemical stability. Following effective DM preparation, P407 was modified and conjugated with FLT3 peptides, CKR and EVQ to formulate DM-CKR, DM-EVQ, and DM-CKR+DM-EVQ. Freshly synthesized DMs displaying FLT3 peptides showed particle sizes smaller than 50 nm and a high drug entrapment level, comparable with DMs. DM-CKR+DM-EVQ was considerably more toxic to KG-1a (AML LSC-like cell model) than Dox-HCl. These FLT3-targeted DMs could increase drug uptake and induce apoptosis induction. Due to an increase in micelle-LSC binding and uptake, DMs displaying both peptides tended to improve the potency of Dox compared to a single peptide-coupled micelle.

13.
Int J Mol Sci ; 23(20)2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36292923

RESUMEN

Gastric cancer has one of the highest incidence rates of cancer worldwide while also contributing to increased drug resistance among patients in clinical practice. Herein, we have investigated the role of diclofenac (DCF) on sensitizing cisplatin resistance in signet ring cell gastric carcinoma cells (SRCGC). Non-toxic concentrations of DCF significantly augmented cisplatin-induced cell death in cisplatin-resistant SRCGC cells (KATO/DDP) but not in cisplatin-sensitive SRCGC cells (KATOIII). Consistently, concomitant treatment of DCF and cisplatin significantly enhanced autophagic cell death due to overproduction of intracellular reactive oxygen species (ROS). At the molecular level, the induction of ROS has been associated with a reduction in antioxidant enzymes expression while inhibiting nuclear factor erythroid 2-related factor 2 (Nrf2) activity. Moreover, the combination of DCF and cisplatin also inhibited the expression of survival proteins including Bcl-2, Bcl-xL, cIAP1 and cyclin D1 in KATO/DDP cells when compared with cisplatin alone. This was due, at least in part, to reduce MAPKs, Akt, NF-κB, AP-1 and STAT-3 activation. Taken together, our results suggested that DCF potentiated the anticancer effect of cisplatin in SRCGC via the regeneration of intracellular ROS, which in turn promoted cell death as an autophagy mechanism and potentially modulated the cell survival signal transduction pathway.


Asunto(s)
Carcinoma de Células en Anillo de Sello , Neoplasias Gástricas , Humanos , Cisplatino/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias Gástricas/patología , Diclofenaco/farmacología , Ciclina D1/metabolismo , FN-kappa B/metabolismo , Antioxidantes/farmacología , Factor de Transcripción AP-1/metabolismo , Resistencia a Antineoplásicos , Apoptosis , Autofagia , Transducción de Señal , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Carcinoma de Células en Anillo de Sello/tratamiento farmacológico
14.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36142258

RESUMEN

Inhibition of inflammatory responses from the spike glycoprotein of SARS-CoV-2 (Spike) by targeting NLRP3 inflammasome has recently been developed as an alternative form of supportive therapy besides the traditional anti-viral approaches. Clerodendrum petasites S. Moore (C. petasites) is a Thai traditional medicinal plant possessing antipyretic and anti-inflammatory activities. In this study, C. petasites ethanolic root extract (CpEE) underwent solvent-partitioned extraction to obtain the ethyl acetate fraction of C. petasites (CpEA). Subsequently, C. petasites extracts were determined for the flavonoid contents and anti-inflammatory properties against spike induction in the A549 lung cells. According to the HPLC results, CpEA significantly contained higher amounts of hesperidin and hesperetin flavonoids than CpEE (p < 0.05). A549 cells were then pre-treated with either C. petasites extracts or its active flavonoids and were primed with 100 ng/mL of spike S1 subunit (Spike S1) and determined for the anti-inflammatory properties. The results indicate that CpEA (compared with CpEE) and hesperetin (compared with hesperidin) exhibited greater anti-inflammatory properties upon Spike S1 induction through a significant reduction in IL-6, IL-1ß, and IL-18 cytokine releases in A549 cells culture supernatant (p < 0.05). Additionally, CpEA and hesperetin significantly inhibited the Spike S1-induced inflammatory gene expressions (NLRP3, IL-1ß, and IL-18, p < 0.05). Mechanistically, CpEA and hesperetin attenuated inflammasome machinery protein expressions (NLRP3, ASC, and Caspase-1), as well as inactivated the Akt/MAPK/AP-1 pathway. Overall, our findings could provide scientific-based evidence to support the use of C. petasites and hesperetin in the development of supportive therapies for the prevention of COVID-19-related chronic inflammation.


Asunto(s)
Antipiréticos , Tratamiento Farmacológico de COVID-19 , Clerodendrum , Hesperidina , Petasites , Células A549 , Antiinflamatorios/farmacología , Caspasa 1/metabolismo , Clerodendrum/metabolismo , Citocinas/metabolismo , Flavonoides/farmacología , Hesperidina/farmacología , Humanos , Inflamasomas/metabolismo , Interleucina-18 , Interleucina-6 , Pulmón/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Extractos Vegetales/farmacología , Proteínas Proto-Oncogénicas c-akt , SARS-CoV-2 , Solventes , Glicoproteína de la Espiga del Coronavirus , Factor de Transcripción AP-1
15.
Int J Mol Sci ; 23(16)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36012254

RESUMEN

Curcuma comosa has been used in traditional Thai medicine to treat menstrual cycle-related symptoms in women. This study aims to evaluate the diarylheptanoid drug modulator, trans-1,7-diphenyl-5-hydroxy-1-heptene (DHH), in drug-resistant K562/ADR human leukemic cells. This compound was studied due to its effects on cell cytotoxicity, multidrug resistance (MDR) phenotype, P-glycoprotein (P-gp) expression, and P-gp function. We show that DHH itself is cytotoxic towards K562/ADR cells. However, DHH did not impact P-gp expression. The impact of DHH on the MDR phenotype in the K562/ADR cells was determined by co-treatment of cells with doxorubicin (Dox) and DHH using an MTT assay. The results showed that the DHH changed the MDR phenotype in the K562/ADR cells by decreasing the IC50 of Dox from 51.6 to 18.2 µM. Treating the cells with a nontoxic dose of DHH increased their sensitivity to Dox in P-gp expressing drug-resistant cells. The kinetics of P-gp mediated efflux of pirarubicin (THP) was used to monitor the P-gp function. DHH was shown to suppress THP efflux and resulted in enhanced apoptosis in the K562/ADR cells. These results demonstrate that DHH is a novel drug modulator of P-gp function and induces drug accumulation in the Dox-resistant K562 leukemic cell line.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Antineoplásicos , Curcuma , Diarilheptanoides , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Antineoplásicos/farmacología , Apoptosis , Compuestos de Bifenilo , Curcuma/química , Diarilheptanoides/farmacología , Doxorrubicina/farmacología , Resistencia a Antineoplásicos , Humanos , Células K562 , Rizoma/metabolismo
16.
Nutrients ; 14(13)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35807916

RESUMEN

Black rice is a functional food that is high in anthocyanin content, primarily C3G and P3G. It possesses nutraceutical properties that exhibit a range of beneficial effects on human health. Currently, the spike glycoprotein S1 subunit of SARS-CoV-2 (SP) has been reported for its contribution to pathological inflammatory responses in targeting lung tissue and innate immune cells during COVID-19 infection and in the long-COVID phenomenon. Our objectives focused on the health benefits of the C3G and P3G-rich fraction of black rice germ and bran (BR extract) on the inhibition of inflammatory responses induced by SP, as well as the inhibition of NF-kB activation and the NLRP3 inflammasome pathway in an in vitro model. In this study, BR extract was identified for its active anthocyanins, C3G and P3G, using the HPLC technique. A549-lung cells and differentiated THP-1 macrophages were treated with BR extract, C3G, or P3G prior to exposure to 100 ng/mL of SP. Their anti-inflammatory properties were then determined. BR extract at concentrations of 12.5−100 µg/mL exhibited anti-inflammation activity for both A549 and THP-1 cells through the significant suppression of NLRP3, IL-1ß, and IL-18 inflammatory gene expressions and IL-6, IL-1ß, and IL-18 cytokine secretions in a dose-dependent manner (p < 0.05). It was determined that both cell lines, C3G and P3G (at 1.25−10 µg/mL), were compatibly responsible for the significant inhibition of SP-induced inflammatory responses for both gene and protein levels (p < 0.05). With regard to the anti-inflammation mechanism, BR extract, C3G, and P3G could attenuate SP-induced inflammation via counteraction with NF-kB activation and downregulation of the inflammasome-dependent inflammatory pathway proteins (NLRP3, ASC, and capase-1). Overall, the protective effects of anthocyanins obtained from black rice germ and bran can be employed in potentially preventive strategies that use pigmented rice against the long-term sequelae of COVID-19 infection.


Asunto(s)
COVID-19 , Oryza , Antocianinas/farmacología , COVID-19/complicaciones , Glucósidos/farmacología , Humanos , Inflamasomas , Interleucina-18 , Pulmón/metabolismo , Macrófagos/metabolismo , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Oryza/metabolismo , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Síndrome Post Agudo de COVID-19
17.
Ann Transl Med ; 10(12): 698, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35845527

RESUMEN

Background: Gastric cancer (GC) has a high incidence and high mortality rate among Asian countries, and distinguishing predictive prognosis biomarkers for GC are essential. Cancer-associated fibroblasts (CAFs) play a significant role in the progression, immune evasion, and therapeutic resistance of GC. Therefore, CAF-associated genes might have huge potential as prognostic biomarkers for predicting tumor progression and survival rate in GC pateints. Methods: A sum of 1,134 GC patients from the The Cancer Genome Atlas Stomach Adenocarcinoma (TCGA-STAD), GSE62254, and GSE84437 datasets as well as GC cohorts from Xijing hospital were included. Firstly, we performed univariate Cox regression analysis to identify CAF-associated prognostic genes. Subsequently, the Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis was used to develop a CAF gene signature (CAFGS) in the TCGA-STAD training cohort. CAFGS's predictive performance was examined in both the training and validation cohorts, and the relationship between CAFGS and the tumor microenvironment (TME) was investigated by ssGSEA, CIBERSORT, TIMER, and ESTIMATE. Finally, a nomogram of CAFGS was established. Results: Ten CAF-associated genes (ANGPTL4, CPNE8, CST2, HTR1F, IL1RAP, NR1D1, NTAN1, OLFML2B, TMEM259, and VTN) were identified to develop CAFGS. A high CAFGS score represented a worse outcome for GC patients in four cohorts, and a strong correlation was found between CAFGS and the infiltration of immune cells. We showed that CAFs contribute to immune evasion and unfavorable prognoses of GC patients by promoting the formation of an immunosuppressive microenvironment, and a high level of CAF infiltration may attenuate the efficacy of immunotherapy. The nomogram based on CAFGS showed reasonable predictive ability and may deliver great clinical net benefits. Conclusions: We established a CAFGS model with 10 CAF-associated genes that had a great predictive value for GC prognosis and survival rate evaluation. This study could provide a novel insight for investigating the role of CAFs in GC.

18.
ACS Omega ; 7(19): 16746-16756, 2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35601338

RESUMEN

Telomerase is essential for the immortality characteristics of most cancers. Telomerase-specific inhibitors should render cancer cells to replicative senescence without acute cytotoxicity. Perylene-based G-quadruplex (G4) ligands are widely studied as telomerase inhibitors. Most reported perylene-based G4 ligands are perylene diimides (PDIs), which often suffer from self-aggregation in aqueous solutions. Previously, we found that PM2, a perylene monoimide (PMI), exhibited better solubility, G4 binding affinity, and telomerase inhibition than PIPER, the prototypic PDI. However, the acute cytotoxicity of PM2 was about 20-30 times more than PIPER in cancer cells. In this report, we replaced the piperazine side chain of PM2 with ethylenediamine to yield PM3 and replaced the N,N-diethylethylenediamine side chain of PM2 with the 1-(2-aminoethyl) piperidine to yield PM5. We found that asymmetric PMIs with two basic side chains (PM2, PM3, and PM5) performed better than PIPER (the prototypic PDI), in terms of hydrosolubility, G4 binding, in vitro telomerase inhibition, and suppression of human telomerase reverse transcriptase (hTERT) expression and telomerase activity in A549 cells. However, PM5 was 7-10 times less toxic than PM2 and PM3 in three cancer cell lines. We conclude that replacing the N,N-diethylethylenediamine side chain with the 2-aminoethylpiperidine on PMIs reduces the cytotoxicity in cancer cells without impacting G4 binding and telomerase inhibition. This study paves the way for synthesizing new PMIs with drug-like properties for selective telomerase inhibition.

19.
Antioxidants (Basel) ; 11(2)2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35204104

RESUMEN

Ultraviolet radiation is a major environmental harmful factor on human skin. In this paper, we investigate the potential mechanism of Houttuynia cordata extract on UVB-induced HaCaT keratinocyte cell death and inflammation. We found that Houttuynia cordata ethyl acetate extract fraction (HC-EA) protected against UVB-induced cell damage. The HPLC results indicate that quercitrin and hyperoside are the major polyphenolics in HC-EA and are responsible for providing protection against UVB-induced cell death. These responses were associated with the regulation of caspase-9 and caspase-3 activation, which rescued HaCaT cells from UVB-induced apoptosis. In addition, HC-EA, quercitrin, and hyperoside attenuated UVB-induced inflammatory mediators, including IL-6, IL-8, COX-2, and iNOS. Furthermore, the treatment of cells with HC-EA and its active compounds abolished intracellular ROS and increased levels of heme oxygenase-1 and superoxide dismutase. UVB-induced ROS production mediated Akt and mitogen activated protein kinases (MAPKs) pathways, including p38, ERK, and JNK. Our results show HC-EA, quercitrin, and hyperoside decreased UVB-induced p38 and JNK phosphorylation, while increasing ERK and Akt phosphorylation. MAPKs and Akt mediated cell survival and death were confirmed by specific inhibitors to Akt and MAPKs. Thus, HC-EA, which contains quercitrin and hyperoside, protected keratinocyte from UVB-induced oxidative damage and inflammation through the modulation of MAPKs and Akt signaling.

20.
Molecules ; 27(3)2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35164085

RESUMEN

Osteoporosis is the result of an imbalance in the bone-remodeling process via an increase in osteoclastic activity and a decrease in osteoblastic activity. Our previous studies have shown that Perilla frutescens seed meal has anti-osteoclastogenic activity. However, the role of perilla leaf hexane fraction (PLH) in osteoporosis has not yet been investigated and reported. In this study, we aimed to investigate the effects of PLH in osteoclast differentiation and osteogenic potential using cell-based experiments in vitro. From HPLC analysis, we found that PLH contained high luteolin and baicalein. PLH was shown to inhibit RANKL-induced ROS production and tartrate-resistant acid phosphatase (TRAP)-positive multi-nucleated osteoclasts. Moreover, PLH significantly downregulated the RANKL-induced MAPK and NF-κB signaling pathways, leading to the attenuation of NFATc1 and MMP-9 expression. In contrast, PLH enhanced osteoblast function by regulating alkaline phosphatase (ALP) and restoring TNF-α-suppressed osteoblast proliferation and osteogenic potential. Thus, luteolin and baicalein-rich PLH inhibits osteoclast differentiation but promotes the function of osteoblasts. Collectively, our data provide new evidence that suggests that PLH may be a valuable anti-osteoporosis agent.


Asunto(s)
Osteogénesis/efectos de los fármacos , Osteoporosis/prevención & control , Perilla frutescens/química , Extractos Vegetales/farmacología , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular , Humanos , Ratones , Osteoblastos/efectos de los fármacos , Osteoclastos/efectos de los fármacos , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Células RAW 264.7
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...